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NOSTROMO  
NEXT-GENERATION OPEN-SOURCE TOOLS FOR ATM PERFORMANCE 
MODELLING AND OPTIMISATION 

This Project Management Plan is part of a project that has received funding from the SESAR Joint Undertaking under grant 
agreement No 892517 under European Union’s Horizon 2020 research and innovation programme. 

 

 

Abstract  

This document aims at describing a preliminary version of the metamodeling methodology to be 
employed within this project. Due to its draft nature, the provided version herein should be revisited 
in the future as the project evolves and as the results are iteratively obtained. Small adaptations, 
performance improvements, and fine-tuning procedures are likely to be required. 

In this deliverable, we also provide brief descriptions of two core concepts that compose the base 
structure of the proposed methodology, namely, active learning and simulation metamodeling itself. 
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1 Introduction 

1.1 Purpose of the Document 

Simulation constitutes a well-known and established tool to model complex real-world systems, such 
as urban and transportation environments. However, despite its clear practical advantages, simulation 
models, when embedded with enough detail and realism, can become computationally expensive to 
run. This shortcoming may hinder the exploration of its input-output behaviour when many variables 
are at play. 

To tackle the mentioned computational challenge, simulation metamodels can be employed to 
estimate the underlying function inherently defined by the simulation model and used as a modelling 
proxy for the latter. In turn, this allows for a reasonable number of exhausting computer experiments 
to be bypassed during the exploration process. 

The problem of expensive simulation run has a clear resemblance with modelling scenarios where 
labeled data tends to be particularly difficult or time-consuming to obtain. In such scenarios, active 
learning has historically proved to be a powerful learning paradigm to be adopted. Its main objective 
is to attain high prediction performances with as few data points as possible. 

This document provides the key aspects of a preliminary metamodeling methodology developed in 
conjunction with a straightforward active learning scheme. 

1.2 Intended readership 

This document is intended to be used by SESAR JU and NOSTROMO members. 

1.3 Terminology and Acronyms 

Term  Acronyms  

ANNS Artificial Neural Networks 

ATM Air Traffic Management 

ECAC European Civil Aviation Conference 

E-OCVM European Operational Concept Validation Methodology 

ER Exploratory Research 

GP Gaussian Process 

KPA Key Performance Area 

KPI Key Performance Indicator 



D3.1 PRELIMINARY METAMODELING METHODOLOGY  

 

  

 

 

 7 
 

 

 

Term  Acronyms  

NOSTROMO Next-generation Open Source Tools for peRfOrmance Modelling and 
Optimisation 

SESAR Single European Sky ATM Research Programme 

SJU Work 
Programme 

The programme which addresses all activities of the SESAR Joint Undertaking 
Agency. 

SESAR 
Programme 

The programme which defines the Research and Development activities and 
Projects for the SJU. 

TMA Terminal Manoeuvring Area 
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2 Active Learning 

Active learning [1], also called query learning, among several other designations, is a subfield of 
supervised machine learning that primarily consists of an iterative process that aims to attain higher 
prediction performance with fewer selected training data points. This process allows the algorithm to 
choose, according to some given criteria, the data points from which it learns. Thus, it is particularly 
useful for modeling tasks where the labeled data is difficult or expensive to obtain. 

The general idea of the active learning approach is to optimally select the most informative data points 
in an active manner in order to not only boost the model training efficiency but also to improve its 
predictive performance, therefore labeling as few data points as possible. Hence, it is essentially 
focused not only on improving the overall prediction performance of the underlying machine learning 
model but also on controlling the associated costs of acquiring new labeled data. The entire process is 
guided by an oracle, traditionally, but not limited to, a human annotator oracle, whose task is to 
provide labeled data instances that are successively incorporated in the initial training data set. 

An arbitrary active learning approach can be formally defined as the following quintuple (L, U, M, O, 
Q) [2]. First, L is the labeled training set. Then, the set of unlabeled data points is represented by U. 
Generally, U#>>#L, i.e., the number of unlabeled points is much higher than the labeled ones. Note 
that U represents the explored area of the feature space. M is the machine learning model. Depending 
on the nature of the problem being modeled, it can be a classification or a regression model, which in 
turn affects the nature of the set L of being discrete or continuous, respectively. The oracle is 
represented by O. In the case of the NOSTROMO project, the oracle role will be played by an ATM 
simulation model, which will be a provider, or generator, of labeled data points, that is to say, 
simulation input-output tuples.  

Finally, Q is the query function that encodes the strategies and criteria for finding and selecting the 
most informative instances from U to be added to L. There are many query strategies formulations 
available within the related literature which essentially encompass different perspectives to approach 
the problem in study. Depending on both the nature of the problem and the model being used, several 
query frameworks can be adopted.  1 summarily depicts the general active learning scheme. 

 

Figure 1- A general illustration of the active learning paradigm. 
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3 Simulation Metamodels 

The development of simulation metamodels [3] has been around since the early '70s [4]. Their primary 
purpose is to serve as surrogates, emulators, or even response surfaces, for simulation models so that 
expensive simulation runs can be avoided. Specific features such as mathematical simplicity, speed, 
and interpretability are usually attributed to metamodels. Consequently, the application of 
metamodels within simulation analysis provides an additional level of understanding of the underlying 
system, as well as of the relationships between the system input and output variables, while 
maintaining a computationally economical and straightforward approach to the problem. 

Simulation metamodels are essentially input/output functions that approximate the true, and usually 
much more complex, unknown function inherently defined by the simulation model itself. Commonly, 
many of these inputs are shared with those of the simulation model, although it is not entirely 
necessary. The metamodel can have extra input variables defined as functions of the original 
simulation inputs. 

Simulation metamodeling can encompass four possible major goals, namely, problem entity 
understanding, simulation output prediction, optimization, and verification/validation [5]. This project 
is not only but mostly concerned with understanding the underlying real system and with assessing 
the prediction performance of the metamodel. The assumption is that the ATM simulation model of 
interest is perfectly validated, verified, optimized, and thus calibrated with respect to the real problem 
under study. To this end, two ATM simulation models, namely FLITAN and MERCURY, previously 
developed by some of the consortium's partners, will be used as test cases. Figure 2 depicts the 
relations and dependencies between real-world problem, simulation model and simulation 
metamodel. 

The ultimate objective is to fit a metamodel that is capable of predicting, with reasonable accuracy, 
the output values of the base simulation model, so that it can be used as a valid modeling replacement. 
Generally, the metamodeling methodology consists of three main steps, namely, the definition of the 
experimental design, metamodel specification, and metamodel learning/fitting. The first step consists 
of strategically sampling the input space to generate a data set for model training. Then, steps 2 and 
3, which are usually coupled, are conducted sequentially. While the former involves selecting a family 
of metamodel functional forms, the latter regards fitting the selected metamodel to the data set 
obtained from step 1. 
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Figure 2 - Relationship between problem entity, simulation model, and simulation metamodel. Adapted from 
[5]. 
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4 Preliminary Methodology 

The current modeling strategy is based on an active learning scheme built on the top of a simulation 
metamodeling approach, and it is specially designed to extract relevant information regarding the 
underlying ATM simulation model under study with as few simulations runs as possible. As such, it 
combines the best of both worlds in order to jointly address the challenge of exploring the simulation 
input space, within the context of computationally expensive simulation models.  

A Gaussian Process (GP) [6] is employed as a simulation metamodel. Thus, GP is considered to 
approximate the simulator's behavior and then used to explore the simulation input space. The fitness 
of the GP is then iteratively improved with active learning via simulation requests by decreasing the 
associated variance of the given predictions over the simulation input region of interest. Nevertheless, 
other machine learning models can be considered and adopted in the future, such as, for example, 
Artificial Neural Networks (ANNs). 

The GP framework is a well-known modeling tool widely applied in numerous research and application 
fields. Due to its Bayesian formalism and highly non-linear properties, it constitutes an excellent option 
for designing active learning strategies based on simulation metamodeling settings. A critical 
characteristic of GPs is that they generate predictions in the form of Gaussian distributions, instead of 
pointwise ones, allowing for increased handling of uncertainty inherently present in any prediction 
process. 

Any GP prediction is univocally defined by a Gaussian distribution with specific mean and variance 
parameters, oftentimes estimated via maximum likelihood conditional upon the training data. These 
parameters are also usually called predictive mean and predictive variance. Here, as mentioned earlier, 
the predictive variance has the crucial role of encapsulating the information potential of unlabeled 
points and their contribution to the underlying learning process. Notice, however, that this does not 
mean that the GP treats the target variable as to being normally distributed. Only the predictions 
themselves are generated as such. When these distributions exhibit relatively high variance around 
the mean value, a wider range of possible estimates are provided. This can be due to high variability 
naturally present in the observed data or to model uncertainty. The latter can be addressed by 
acquiring new data points through simulation runs in strategic input regions such as those associated 
with high predictive variance. From the model learning point-of-view, these unlabeled regions 
potentially encode more information than those in which the model is more certain and thus generally 
exhibiting low predictive variance values. 

In this first version, a straightforward pool-based active learning strategy is adopted, similar to those 
seen in [7] [8]. The experimental design is depicted in Figure 3. Here the unlabeled data set U is entirely 
available for querying and represents the simulation input region in which we aim to explore the 
simulator's behavior. It should correspond to the simulation input region in which we aim to explore 
the simulation’s output behavior. Ultimately, it should be suggested by domain experts and according 
to the concrete real-world problem being studied. 

The pool of labeled instances L is comprised of simulation results, i.e., input-output tuples. The 
machine learning model M is a GP, whereas the query function Q is based on the analysis of the 
predictive variance provided by the latter at each point in U. Particularly, this function can be designed 
to query, via simulation requests, the points with the highest predictive variance or, in other words, 
with greatest prediction uncertainty. 
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The general idea within this experimental design is to assume that the functional relationship between 
the simulation input vector and the output is described by a GP. After the GP is fitted to L, the provided 
conditional distribution is used to predict the output values over U. This makes it possible to bypass 
simulation runs and to approximate the simulator behavioral structure, making the exploration 
process more efficient. The predictive variance is used as a measure of fitness, and it should decrease 
as the iterative process evolves. Finally, this trained GP model is used as a simulation metamodel to 
explore the behavior of the simulator and then to conduct policy analysis and assessment. 

This approach is divided into three main blocks or steps. First, the simulation metamodeling 
approximates the simulation in question using a GP. Then, an active learning strategy is used to 
iteratively increase the fitting quality of the GP, by decreasing, for example, the total predictive 
variance across the unlabeled input simulation region. This metric is computed by summing the 
predictive variance provided to each unlabeled data point within U. Other metrics, relying on the 
predictive variance or not, can be considered in the future. 

Finally, when the stopping criteria are verified, policy analysis by means of the provided meta-
simulator is conducted. Here, notice that the predictive variance is used as a proxy measure of 
informativeness of each unlabeled data point, that is to say, that high variance points within the search 
space U potentially encompass more information.  

The stopping criteria can be designed in various forms. A relatively straightforward approach is to 
consider it as a function of the predictive variance insofar that the addition of new training points will 
eventually have no significant impact on the model’s performance. In other words, it is expected that 
the model will ultimately reach a prediction performance plateau where the further expansion of the 
training set does not justify the computational effort of acquiring new labeled data points. Hence, 
when the addition of new training points effectively translates into a low impact on the reduction of 
the overall predictive variance across U, the learning process may be stopped. 

 

Figure 3 - Preliminary High-level Active Learning Metamodeling approach. 
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In practice, this methodology will require a constant link between the algorithmic script and the 
simulator platform itself, either through a configuration file (usually a text-based file such as txt or csv) 
or via an API. The former approach constitutes the simplest way to proceed and will be adopted in the 
preliminary stages of the methodology, as illustrated in Figure 4. 

 

Figure 4 - The dynamic communication link between script and simulator. 
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5 Data – Test Cases 

As mentioned previously in this document, FLITAN and MERCURY simulation models will be used to 
develop test cases and to conduct preliminary exploratory experiences. 

This first approach should employ simplified versions of these simulators. One way to attain this is to 
fix most of the inputs while exploring the output behavior in relation to only a small set of variables. A 
set of 1-3 inputs and outputs (or KPIs) would be ideal to start exploring and assessing the performance 
of this methodology and eventually draw future lines of fine-tuning and improvement. Whereas these 
test cases may be unrealistic from the domain application point-of-view, they constitute a proper 
sandbox for the first iterations of the metamodeling methodology. 

The GP framework can be used either as a regression or a classification tool, essentially depending on 
the nature of the output metric of interest. However, continuous variables are typically better handled 
when search methods are required. Thus, this first iteration should explicitly deal with continuous 
variables, although it is not entirely needed. 

In the case of FLITAN, the TMA departure time can be used as the single variable input, whereas for 
the MERCURY, the Turn-around time would be a good option. 

The selection of an output metric of interest, or several, does not pose a real concern insofar that they 
will always be produced and accessible after each simulation run, regardless of the input variables 
under study. Multiple GPs can be easily employed to model different output variables independently. 
In the future, however, a multiple-output approach can be considered. 
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