

D3.2 Metamodels
Requirements
Specification

 Deliverable ID: D3.2

 Dissemination Level: CO

 Project Acronym: NOSTROMO

 Grant: 892517
 Call: H2020-SESAR-2019-2
 Topic: SESAR-ER4-26-2019

 Consortium Coordinator: CRIDA

 Edition date: 18/02/2021

 Edition: 00.01.00

 Template Edition: 02.00.02

EXPLORATORY RESEARCH

D3.2 METAMODELS REQUIREMENTS SPECIFICATION

 2

Authoring & Approval

Authors of the document

Name/Beneficiary Position/Title Date

Francisco Antunes DTU 02/12/2020

Reviewers internal to the project

Name/Beneficiary Position/Title Date

Javier Poveda Barbero CRIDA 02/12/2020

Christoffer Riis DTU 02/12/2020

David Mocholí NOMMON 02/12/2020

Francisco Pereira DTU 02/12/2020

Sandrine Molton ISA 03/12/2020

Approved for submission to the SJU By - Representatives of beneficiaries involved in the
project

Name/Beneficiary Position/Title Date

Mayte Cano CRIDA 07/12/2020

Ricardo Herranz NOMMON Silent Approval

Gerard Gurtner UoW Silent Approval

Jordi Pons Prats UPC Silent Approval

Francisco Camara DTU 07/12/2020

Sandrine Molton ISA Silent Approval

Rejected By - Representatives of beneficiaries involved in the project

Name/Beneficiary Position/Title Date

N/A

Document History

Edition Date Status Author Justification

00.00.01 02/11/2020 Draft DTU Document creation for

internal review

00.00.02 04/11/2020 Draft DTU Version for partners approval

00.00.03 07/12/2020 Final Draft DTU Version for SJU delivery

00.01.00 18/02/2021 Final DTU Version approved by SJU

D3.2 METAMODELS REQUIREMENTS SPECIFICATION

 3

Copyright Statement © – 2020 – DTU, CRIDA, NOMMON, UoW, UPC, ISA. All rights reserved. Licensed to the

SJU under conditions

D3.2 METAMODELS REQUIREMENTS SPECIFICATION

 4

NOSTROMO
NEXT-GENERATION OPEN-SOURCE TOOLS FOR ATM PERFORMANCE
MODELLING AND OPTIMISATION

This deliverable is part of a project that has received funding from the SESAR Joint Undertaking under grant agreement No
892517 under European Union's Horizon 2020 research and innovation programme.

Abstract

This deliverable aims to specify the simulation metamodeling framework's main technical and
modeling requirements to be deployed within WP3. Several considerations are drawn concerning the
active learning strategy to be implemented, which eventually requires a constant link between the
metamodel, the simulation model, and the data repository.

D3.2 METAMODELS REQUIREMENTS SPECIFICATION

 5

Table of Contents

Abstract .. 4

1 Introduction .. 6

1.1 Purpose of the Document... 6

1.2 Intended readership ... 6

1.3 Terminology and Acronyms.. 7

2 Communication Link... 8

3 Input/Output Variable Selection ... 10

4 Simulation Models' Documentation.. 11

5 Requirements Specification ... 12

5.1 Data Sets Formatting .. 12

5.2 Exploration Limits ... 13

5.3 Simulation-Metamodel-Repository Links .. 13

5.4 Metamodel High-Level Requirements Summary .. 14

6 References .. 18

List of Tables

Table 1 – Data Set Structure. ... 13

Table 2 - Exploration Limits Set Structure. ... 13

Table 3 - Metamodel High-Level Requirements Summary. .. 14

List of Figures

Figure 1 - Communication link between the simulation model and the metamodel.................. 8

Figure 2 - Simulation run request and output reading flow. .. 9

Figure 3 - Input-Output Subspaces used for metamodeling... 10

Figure 4 - Links connecting the metamodel, simulation model, and data repository. 14

D3.2 METAMODELS REQUIREMENTS SPECIFICATION

 6

1 Introduction

1.1 Purpose of the Document

Simulation metamodels [1] are essentially input-output functions that approximate the true, usually
much more complex, unknown function inherently defined by the simulation model. Such models are
characterized by simple, functional formulations and evaluation speeds, allowing for a significant
reduction of the computational burden associated with the intense exploration of simulation models'
output behavior.

According to [2], simulation metamodels can be employed in four different situations, depending on
their ultimate goal, namely 1) problem entity understanding, 2) simulation output prediction, 3)
optimization, and finally, 4) verification/validation. This task will mostly focus on the first and second
goals. Hence, the assumption is that the simulation model is perfectly verified/validated, optimized,
and calibrated with respect to the studied real-world system.

Furthermore, Active Learning (AL) [3][4] schemes will be employed on top of the metamodeling
framework. This learning paradigm aims to attain high accuracy performance with a few data points
as possible. It proves to be particularly relevant for large-scale simulation models involving dozens of
input variables and exhibiting reasonably high runtimes. In this sense, when labeled data is
computationally expensive to obtain, AL can be used to minimize the acquisition costs (i.e., running
the simulation model) while, on the other hand, aiming for a high prediction performance.

Despite their obvious advantages, simulation metamodels are not exempted from their particular
drawbacks. As mentioned by [5], when the number of simulation input variables is too large, the
required computational costs and complexity of the metamodels might not be worthy from a modeling
perspective anymore. The well-known "curse of dimensionality" [6] is also a problem for
metamodeling approaches. On the other hand, and within simulation experimental settings, active
learning requires, by its turn, a constant communication link between the learning metamodel and the
simulation model to work properly.

Several minimal requirements are considered and specified within this deliverable to address the
above-mentioned issues and related conditions. These are meant to ensure that the proposed active
learning simulation metamodeling strategy works as expected.

Due to the preliminary and exploratory nature of the underlying metamodel methodology, this
deliverable is a living document that will be modified throughout the project to ensure that it is
continuously aligned with its objectives. The final version will eventually be integrated as a part of
Deliverable 3.4.

1.2 Intended readership

This document is intended to be used by SESAR JU and NOSTROMO members.

D3.2 METAMODELS REQUIREMENTS SPECIFICATION

 7

1.3 Terminology and Acronyms

Term Acronyms

AL Active Learning

API Application Programming Interface

ATM Air Traffic Management

CSV Comma-Separated Values

ER Exploratory Research

KPA Key Performance Area

KPI Key Performance Indicator

NOSTROMO Next-generation Open Source Tools for peRfOrmance Modelling and
Optimisation

OS Operating System

SESAR Single European Sky ATM Research Programme

SJU Work
Programme

The programme which addresses all activities of the SESAR Joint Undertaking
Agency.

SESAR
Programme

The programme which defines the Research and Development activities and
Projects for the SJU.

SQL Structured Query Language

D3.2 METAMODELS REQUIREMENTS SPECIFICATION

 8

2 Communication Link

Active Learning is a special case of machine learning in which the learning algorithm, or model, can
interactively query a label provider, such as a simulation model. In this experimental setting, the labels
ultimately refer to the simulation model's simulation output values.

As expected, this learning interaction requires a constant and active communication link between the
learner and the label provider. There are two important data-related entities within active learning
schemes: the labeled and unlabeled pools. Whereas the former essentially represents the training set,
the latter refers to the input search space where the simulation model's behavior is being
approximated. The unlabeled data points selected to be labeled by the simulation model are then
added to the labeled pool, thereby expanding it interactively. A pictorial representation of this cyclic
link is represented in Figure 1.

Figure 1 - Communication link between the simulation model and the metamodel.

Depending on the type of implementation, simulation models may use different strategies to access
and store data, which include input data, output results, parameters, amongst other types. Databases,
simple text files, or APIs are examples of data management that simulation designers can use. This,
however, does not significantly alter the modeling algorithm per se but slightly affects the way it
queries the simulation model for new labeled data points. Figure 2 summarizes a possible simulation
request and output reading scheme.

Furthermore, although recommended, mainly to reduce communication lags, both the simulation and
active learning models need not be in the same environment. Hence, if necessary, the simulation
requests might be performed remotely.

D3.2 METAMODELS REQUIREMENTS SPECIFICATION

 9

Figure 2 - Simulation run request and output reading flow.

The essential idea of active learning is to minimize the number of simulation runs otherwise required
with its absence, making the communication link between both entities crucial in any active learning
metamodeling approach.

Nevertheless, this can be remedied somehow using a fixed data set encompassing the results of
previously conducted simulation experiments. The data set can then be split into the training and the
prediction pools. The latter will also play the simulation model's role, consequently working as a proxy
for the label provider. This setting is far from ideal: it tends to render the active learning scheme useless
since all the computational effort has already been utilized a priori. Thus, no efficiency is actually being
achieved. In any case, it can be used for comparison and benchmarking purposes.

D3.2 METAMODELS REQUIREMENTS SPECIFICATION

 10

3 Input/Output Variable Selection

Traditionally, simulation models encompass a multitude of input variables and a set of output variables
used to assess the performance of the underlying system being studied. This is particularly evident in
the cases of Flitan and Mercury ATM simulators used in this project.

It is virtually unfeasible to consider the entire range of input/output variables simultaneously from a
metamodeling perspective. This would make the metamodel less interpretable and computationally
demanding due to the high dimensionality, eventually rendering it less attractive as a base framework
for an active learning strategy. Hence, to address this shortcoming, it is essential to select a
manageable subset of input variables varying within reasonable value windows (see Figure 3.2.3). The
output dimension does not pose such a similar modeling hindrance since it is on the simulation input
space that the exploration process is conducted and in which the simulation model is queried over.

Different subsets of input variables, not necessarily disjoint and possibly associated with different
planning scenarios and solutions, should be considered. Ultimately, these variables should represent
the factors with the most significant predictive impact on the KPI's of interest within the decision-
making process. For this reason, domain knowledge and expert advice are crucial for the variable
selection procedure. One metamodel can be developed per variable subset defined within each
scenario. The different subsets can also be used for benchmark and comparison purposes, and the
combination of variables, disjointly defined within each scenario, is also a possibility.

Figure 3 - Input-Output Subspaces used for metamodeling.

D3.2 METAMODELS REQUIREMENTS SPECIFICATION

 11

4 Simulation Models' Documentation

Well-documented simulation models constitute a crucial component within the metamodeling
framework. Although most of these approaches treat the simulation models as pure black -boxes,
external expert domain knowledge and guidance is highly advisable, as it can significantly ease the
ramp-up of the modeling process.

Such documentation should include, to the greatest extent possible, a detailed list of the most relevant
input/output variables as well as a set of features that characterize them from both mathematical and
interpretation perspectives:

• Type of variable, i.e., continuous vs. discrete.

• Possible range of values (theoretically).

• Accepted range of values (in practice).

• Impossible combination of values (both theoretically and in practice) .

• Default range of values (e.g., the "average" standard value).

• Diagram of causal dependency, not only between input and output variables but also within
the input and output dimensions.

• Brief description and interpretation within the entire simulation environment.

D3.2 METAMODELS REQUIREMENTS SPECIFICATION

 12

5 Requirements Specification

In theory, and purely from a modeling point-of-view, most of the metamodels' requirements rely on
the correct specification of its inputs and output variables, which in turn generally correspond to
subsets of the original simulation model's input and output dimensions, respectively. However, from
an implementation perspective, that is to say, in practice, specific technical aspects must be taken into
account.

5.1 Data Sets Formatting

Generally, training sets are organized in matrix form and denoted by (X, Y). Here, X is an n x D1 design
matrix, with D1 representing the number of input dimensions (or independent variables, regressors)
and n the number of observations. Thus, each column represents a different input variable, whereas
each line corresponds to the different simulation instances or runs. Similarly, Y is an n x D2 matrix,
where n has the same meaning as in the latter, but D2 is now the dimensionally of the output space
(or target space, dependent variables). A concrete example: consider a training set with 100 different
simulation results, 15 input variables, and three output variables. X contains 100 x 15 elements,
whereas Y has 100 x 3. The whole training set (X, Y) encompasses 100 x 18 entries. The result of the
metamodel training is, trivially, a trained metamodel with prediction capabilities. Finally, this data set
is rewritten to (Xtr, Ytr) to highlight its training purposes.

The prediction stage follows the training stage. Both the testing and validation are omitted in this text,
as they share similar specifications as the training stage. During prediction, the values of the dependent
variable are not available. Thus, the trained metamodel only receives an unlabeled data set, i.e., a data
set containing only the independent variables values, denoted by Xpred. After prediction, an
estimative for the unknown Y, Ypred, is obtained. Thus, the generated prediction data set is
represented by (Xpred, Ypred). This data set is precisely used to explore the simulation input space by
generating predictions for the simulation output results.

The simplest, most straightforward, and hassle-free way to store and manage all the above-mentioned
data sets is via plain text-based files, namely, the Comma-Separated Values (CSV) format, using "," as
a separator. By adopting such a format, the correspondence between the matrix format and the CSV
becomes trivial and direct. Each line corresponds to different simulation runs, whereas each column
corresponds to the input and output variable dimensions. For example, in the case of (Xtr, Ytr), and
assuming M simulation runs, the corresponding CSV version would be akin to Table 1.

Note, however, that the first column displaying the simulation number is not required in practice. It
serves merely for illustration purposes within this report. The same is valid for the values, which were
arbitrarily set. By default, the metamodel will automatically identify each line of the CSV as a different
simulation result. On the other hand, the headers should identify and distinguish the input and output
variables.

Similar CSV structures can be easily derived for the remaining data sets.

D3.2 METAMODELS REQUIREMENTS SPECIFICATION

 13

Table 1 – Data Set Structure.

5.2 Exploration Limits

Another important requirement is the specification of the input search/exploration regions. This can
be achieved by defining specific lower and upper thresholds for each independent input variable,
which in turn will depend upon the case studies' nature and details. The corresponding CSV should be
similar to the following table.

Table 2 - Exploration Limits Set Structure.

Lower limit Upper limit

Input 1 0 300

Input 2 0 1

… … …

Input D1 25 125

These limits do not necessarily correspond to the input variables' possible ranges but rather to subsets
of these ranges. For example, if Input 1 represents the taxi time (for all flows, for the sake of simplicity),
in theory, the possible values will definitely lie in [0, +infinity]. However, for a particular case study,
the metamodeling exploration region might be restricted to [100, 300]. This means that values outside
this interval are not a priori relevant to the study in question. Note, however, that these input
threshold specifications do not serve as inputs for the metamodel itself. Instead, they help define the
simulators' input space exploration regions from a modeling and active learning perspective.

5.3 Simulation-Metamodel-Repository Links

As seen in section D3.2, the metamodel requires a communication link to the simulation model.
Another important link is the connection to a data repository or database (MySQL, for example), which
in turn is used to store and manage both training and prediction (metamodel results) datasets. A
dedicated API might not be entirely necessary for the database access, as the metamodel script can
natively connect to it and execute SQL-like requests.

 Input 1 Input 2 … Input D1 Output 1 Output 2 … Output D2

Simul run 1 100 0 … 0.1 300 10.5 … 50.3

Simul run 2 150 0.5 … 0.2 350 15.8 … 75.8

… … … … … … … … …

Simul run M 300 1 … 0.3 400 30.9 … 100.4

D3.2 METAMODELS REQUIREMENTS SPECIFICATION

 14

Figure 4 - Links connecting the metamodel, simulation model, and data repository.

The simulation metamodel starts its learning process with an initial set of prior simulation results
accessible from the data repository. Afterward, this initial training set gets iteratively expanded via
simulation requests as the active learning algorithm evolves. Here notice that a simulation request
does not encompass the transfer of data per se but merely queries to run the simulation model with
specific input data points locations.

When the stopping criteria are met, the simulation metamodel's final results are stored in the data
repository. Figure 4 briefly describes the involved data flows. The dashed line connecting the
simulation model and the data repository means that the depicted data flow occurs only once, i.e., it
is not part of the cyclic active learning algorithm.

Ideally, the metamodel should request and obtain simulation results via API. If this is not possible,
direct manipulation of text-based files, which are then read by the simulator as inputs, constitutes a
straightforward compromise.

Additionally, for traceability and logging purposes, each active learning iteration can be stored in the
data repository, along with the metamodel's fitting parameters and several prediction performance
indicators. This tracing can be provided by the metamodel script after the algorithm has finished, along
with the metamodel's results.

5.4 Metamodel High-Level Requirements Summary

As the project evolves, it is expected that some of these requirements might be either expanded or
revisited in the future. Most of the potential adjustments are likely to depend on the simulation
models' final concrete implementations and data repository, especially in terms of their API
specifications. The following table summarizes these requirements.

Table 3 - Metamodel High-Level Requirements Summary.

D3.2 METAMODELS REQUIREMENTS SPECIFICATION

 15

ID Description Comment

NOSTROMO-MM-REQ-01 Metamodel receives a CSV (txt)
file containing the input-output
simulation results.

Corresponds to the training
data set - (Xtr, Ytr).

NOSTROMO-MM-REQ-02 Metamodel receives a CSV (txt)
file containing only input variables
values.

Corresponds to the prediction
set - independent variables
only - Xpred's

NOSTROMO-MM-REQ-03 CSV (or simple .txt format) using
“,” (comma) as a value separator.

n.a.

NOSTROMO-MM-REQ-04 Headers should be present to
identify and distinguish the input
from the output variables.

The identification via header
can be made, for example, by
appending "_input" or
"_output" to the end of the
variables names.

NOSTROMO-MM-REQ-05 The CSV file lines refer to different
simulation runs, and columns
refer to the input/output
variables used.

n.a.

NOSTROMO-MM-REQ-06 Metamodel provides to the data
repository a CSV (txt) file
containing the input-output
predicted results. Each line refers
to a different simulation run, and
columns refer to the input/output
variables used.

Corresponds to the entire
prediction set - (Xpred, Ypred)

NOSTROMO-MM-REQ-07 Metamodel provides to the data
repository a CSV (txt) containing
the prediction history split by
iteration. The structure should be
similar to that of NOSTROMO-
MM-REQ-06

In practice, it corresponds to
each iterative (Xpred_i,
Ypre_i), where i is the
iteration number. Hence, each
CSV file should be generated
by iteration. Moreover, the
index i should be appended to
the end of the file's name
using, for example, "_iter_i".

NOSTROMO-MM-REQ-08 Metamodel provides to the data
repository a CSV (txt) containing
the history of its own parameters,
which should vary from iteration
to iteration.

The structure of this file is
highly dependent on the type
of metamodel used. In the
case of the simplest approach
of Gaussian Processes, only

D3.2 METAMODELS REQUIREMENTS SPECIFICATION

 16

two hyper-parameters are
used. Hence, an n x 2 matrix
would suffice, where n is the
number of iterations.

NOSTROMO-MM-REQ-09 Metamodel provides to the data
repository a CSV (txt) containing
the history of its prediction
performance or other kinds of
relevant metrics.

This should be an n x K matrix,
where n is the number of
iterations and K the number of
metrics.

NOSTROMO-MM-REQ-10 Each input/output variable should
be unidimensional and can be
both continuous or discrete.

For example, if an input
variable is a bidimensional
array containing the mean and
standard deviation of a
Gaussian distribution, it
should be split into two
different columns.

NOSTROMO-MM-REQ-11 Metamodel receives the lower
and upper search bounds for each
input dimension via a CSV (txt).

This data can be represented
by a D1 x 2 matrix, where each
line corresponds to each input
variable. The two columns
encompass the lower and
upper bounds, respectively.
This helps the metamodel to
define the input
search/exploration space of
interest.

NOSTROMO-MM-REQ-12 Metamodel requires a
communication link to query (or
run) the simulation model in
specific input points to obtain the
real simulation results (or labels).
This can typically be achieved via
Application Programming
Interface (API) on the simulation
model's side.

Each query's result should be
in the form of CSV (txt) as in
NOSTROMO-MM-REQ-01. This
link is crucial for the active
learning part of the
metamodeling methodology.
Many APIs typically work with
JSON files. If required, minor
adaptations can be made so
that the metamodel receives
that type of file.

NOSTROMO-MM-REQ-13 Metamodel requires a connection
to a database from which it can
read the initial simulation results.

The initial simulation results
encompass prior simulation
experiments and constitute
the starting point for the
active learning process.

D3.2 METAMODELS REQUIREMENTS SPECIFICATION

 17

NOSTROMO-MM-REQ-14 Metamodel requires a connection
to a database where it can store
its results.

The metamodel stores its final
results in the database for
further analysis.

NOSTROMO-MM-REQ-15 Metamodeling methodology is
implemented in Python.

Other scripting languages can
be used, such as R or Matlab,
although it is improbable.

NOSTROMO-MM-REQ-16 Operating System (OS):
Unix/Linux.

As Python is cross-platform,
the OS can be changed if any
infrastructure requirement
demands it. A few minor
adjustments are likely to be
undertaken.

NOSTROMO-MM-REQ-17 High-level causal dependency
among the simulation
variables/parameters.

Examples: workflow diagrams,
pseudo-algorithms, and
dependency graphs.

D3.2 METAMODELS REQUIREMENTS SPECIFICATION

 18

6 References

[1] L. W. Friedman, The simulation metamodel. Springer Science & Business Media, 2012.

[2] Jack PC Kleijnen and Robert G Sargent. A methodology for fitting and validating metamodels in
simulation. European Journal of Operational Research, 120(1):14–29, 2000.

[3] Burr Settles. Active learning literature survey. Computer Sciences Technical Report 1648, University
of Wisconsin–Madison, 2009.

[4] Xizhao Wang and Junhai Zhai. Learning with Uncertainty. CRC Press, 2016.

[5] Wang, G. Gary; Shan, Songqing. Review of metamodeling techniques in support of enginee ring
design optimization. 2007.

[6] Köppen, Mario. The curse of dimensionality. In: 5th Online World Conference on Soft Computing in
Industrial Applications (WSC5). 2000. p. 4-8.

D3.2 METAMODELS REQUIREMENTS SPECIFICATION

 19

