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NOSTROMO   
NEXT-GENERATION OPEN-SOURCE TOOLS FOR ATM PERFORMANCE 
MODELLING AND OPTIMISATION 

This deliverable is part of a project that has received funding from the SESAR Joint Undertaking under grant agreement No 
892517 under European Union's Horizon 2020 research and innovation programme. 

 
 

Abstract  

This deliverable aims to specify the simulation metamodeling framework's main technical and 
modeling requirements to be deployed within WP3. Several considerations are drawn concerning the 
active learning strategy to be implemented, which eventually requires a constant link between the 
metamodel, the simulation model, and the data repository. 
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1 Introduction 

1.1 Purpose of the Document 

Simulation metamodels [1] are essentially input-output functions that approximate the true, usually 
much more complex, unknown function inherently defined by the simulation model. Such models are 
characterized by simple, functional formulations and evaluation speeds, allowing for a significant 
reduction of the computational burden associated with the intense exploration of simulation models' 
output behavior. 

According to [2], simulation metamodels can be employed in four different situations, depending on 
their ultimate goal, namely 1) problem entity understanding, 2) simulation output prediction, 3) 
optimization, and finally, 4) verification/validation. This task will mostly focus on the first and second 
goals. Hence, the assumption is that the simulation model is perfectly verified/validated, optimized, 
and calibrated with respect to the studied real-world system.  

Furthermore, Active Learning (AL) [3][4] schemes will be employed on top of the metamodeling 
framework. This learning paradigm aims to attain high accuracy performance with a few data points 
as possible. It proves to be particularly relevant for large-scale simulation models involving dozens of 
input variables and exhibiting reasonably high runtimes. In this sense, when labeled data is 
computationally expensive to obtain, AL can be used to minimize the acquisition costs (i.e., running 
the simulation model) while, on the other hand, aiming for a high prediction performance.  

Despite their obvious advantages, simulation metamodels are not exempted from their particular 
drawbacks. As mentioned by [5], when the number of simulation input variables is too large, the 
required computational costs and complexity of the metamodels might not be worthy from a modeling 
perspective anymore. The well-known "curse of dimensionality" [6] is also a problem for 
metamodeling approaches. On the other hand, and within simulation experimental settings, active 
learning requires, by its turn, a constant communication link between the learning metamodel and the 
simulation model to work properly. 

Several minimal requirements are considered and specified within this deliverable to address the 
above-mentioned issues and related conditions. These are meant to ensure that the proposed active 
learning simulation metamodeling strategy works as expected. 

Due to the preliminary and exploratory nature of the underlying metamodel methodology, this 
deliverable is a living document that will be modified throughout the project to ensure that it is 
continuously aligned with its objectives. The final version will eventually be integrated as a part of 
Deliverable 3.4. 

1.2 Intended readership 

This document is intended to be used by SESAR JU and NOSTROMO members.  
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1.3 Terminology and Acronyms 

Term  Acronyms  

AL Active Learning 

API Application Programming Interface 

ATM Air Traffic Management 

CSV Comma-Separated Values 

ER Exploratory Research 

KPA Key Performance Area 

KPI Key Performance Indicator 

NOSTROMO Next-generation Open Source Tools for peRfOrmance Modelling and 
Optimisation 

OS Operating System 

SESAR Single European Sky ATM Research Programme 

SJU Work 
Programme 

The programme which addresses all activities of the SESAR Joint Undertaking 
Agency. 

SESAR 
Programme 

The programme which defines the Research and Development activities and 
Projects for the SJU. 

SQL Structured Query Language 
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2 Communication Link 

Active Learning is a special case of machine learning in which the learning algorithm, or model, can 
interactively query a label provider, such as a simulation model. In this experimental setting, the labels 
ultimately refer to the simulation model's simulation output values.  

As expected, this learning interaction requires a constant and active communication link between the 
learner and the label provider. There are two important data-related entities within active learning 
schemes: the labeled and unlabeled pools. Whereas the former essentially represents the training set, 
the latter refers to the input search space where the simulation model's behavior is being 
approximated. The unlabeled data points selected to be labeled by the simulation model are then 
added to the labeled pool, thereby expanding it interactively. A pictorial representation of this cyclic 
link is represented in Figure 1. 

 

 

Figure 1 - Communication link between the simulation model and the metamodel.  

 

Depending on the type of implementation, simulation models may use different strategies to access 
and store data, which include input data, output results, parameters, amongst other types. Databases, 
simple text files, or APIs are examples of data management that simulation designers can use. This, 
however, does not significantly alter the modeling algorithm per se but slightly affects the way it 
queries the simulation model for new labeled data points. Figure 2 summarizes a possible simulation 
request and output reading scheme.  

Furthermore, although recommended, mainly to reduce communication lags, both the simulation and 
active learning models need not be in the same environment. Hence, if necessary, the simulation 
requests might be performed remotely. 

 



D3.2 METAMODELS REQUIREMENTS SPECIFICATION  

 

  

 

 

 9 
 

 

 

 
 

Figure 2 - Simulation run request and output reading flow. 

 

The essential idea of active learning is to minimize the number of simulation runs otherwise required 
with its absence, making the communication link between both entities crucial in any active learning 
metamodeling approach.  

Nevertheless, this can be remedied somehow using a fixed data set encompassing the results of 
previously conducted simulation experiments. The data set can then be split into the training and the 
prediction pools. The latter will also play the simulation model's role, consequently working as a proxy 
for the label provider. This setting is far from ideal: it tends to render the active learning scheme useless 
since all the computational effort has already been utilized a priori. Thus, no efficiency is actually being 
achieved. In any case, it can be used for comparison and benchmarking purposes. 
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3 Input/Output Variable Selection 

Traditionally, simulation models encompass a multitude of input variables and a set of output variables 
used to assess the performance of the underlying system being studied. This is particularly evident in 
the cases of Flitan and Mercury ATM simulators used in this project. 

It is virtually unfeasible to consider the entire range of input/output variables simultaneously from a 
metamodeling perspective. This would make the metamodel less interpretable and computationally 
demanding due to the high dimensionality, eventually rendering it less attractive as a base framework 
for an active learning strategy. Hence, to address this shortcoming, it is essential to select a 
manageable subset of input variables varying within reasonable value windows (see Figure 3.2.3). The 
output dimension does not pose such a similar modeling hindrance since it is on the simulation input 
space that the exploration process is conducted and in which the simulation model is queried over.  

Different subsets of input variables, not necessarily disjoint and possibly associated with different 
planning scenarios and solutions, should be considered. Ultimately, these variables should represent 
the factors with the most significant predictive impact on the KPI's of interest within the decision-
making process. For this reason, domain knowledge and expert advice are crucial for the variable 
selection procedure. One metamodel can be developed per variable subset defined within each 
scenario. The different subsets can also be used for benchmark and comparison purposes, and the 
combination of variables, disjointly defined within each scenario, is also a possibility.  

 

 

Figure 3 - Input-Output Subspaces used for metamodeling. 
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4 Simulation Models' Documentation 

Well-documented simulation models constitute a crucial component within the metamodeling 
framework. Although most of these approaches treat the simulation models as pure black -boxes, 
external expert domain knowledge and guidance is highly advisable, as it can significantly ease the 
ramp-up of the modeling process. 

Such documentation should include, to the greatest extent possible, a detailed list of the most relevant 
input/output variables as well as a set of features that characterize them from both mathematical and 
interpretation perspectives: 

• Type of variable, i.e., continuous vs. discrete. 

• Possible range of values (theoretically). 

• Accepted range of values (in practice). 

• Impossible combination of values (both theoretically and in practice) . 

• Default range of values (e.g., the "average" standard value). 

• Diagram of causal dependency, not only between input and output variables but also within 
the input and output dimensions. 

• Brief description and interpretation within the entire simulation environment. 
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5 Requirements Specification 

In theory, and purely from a modeling point-of-view, most of the metamodels' requirements rely on 
the correct specification of its inputs and output variables, which in turn generally correspond to 
subsets of the original simulation model's input and output dimensions, respectively. However, from 
an implementation perspective, that is to say, in practice, specific technical aspects must be taken into 
account. 

5.1 Data Sets Formatting 

Generally, training sets are organized in matrix form and denoted by (X, Y). Here, X is an n x D1 design 
matrix, with D1 representing the number of input dimensions (or independent variables, regressors) 
and n the number of observations. Thus, each column represents a different input variable, whereas 
each line corresponds to the different simulation instances or runs. Similarly, Y is an n x D2 matrix, 
where n has the same meaning as in the latter, but D2 is now the dimensionally of the output space 
(or target space, dependent variables). A concrete example: consider a training set with 100 different 
simulation results, 15 input variables, and three output variables. X contains 100 x 15 elements, 
whereas Y has 100 x 3. The whole training set (X, Y) encompasses 100 x 18 entries. The result of the 
metamodel training is, trivially, a trained metamodel with prediction capabilities. Finally, this data set 
is rewritten to (Xtr, Ytr) to highlight its training purposes. 

The prediction stage follows the training stage. Both the testing and validation are omitted in this text, 
as they share similar specifications as the training stage. During prediction, the values of the dependent 
variable are not available. Thus, the trained metamodel only receives an unlabeled data set, i.e., a data 
set containing only the independent variables values, denoted by Xpred. After prediction, an 
estimative for the unknown Y, Ypred, is obtained. Thus, the generated prediction data set is 
represented by (Xpred, Ypred). This data set is precisely used to explore the simulation input space by 
generating predictions for the simulation output results. 

The simplest, most straightforward, and hassle-free way to store and manage all the above-mentioned 
data sets is via plain text-based files, namely, the Comma-Separated Values (CSV) format, using "," as 
a separator. By adopting such a format, the correspondence between the matrix format and the CSV 
becomes trivial and direct. Each line corresponds to different simulation runs, whereas each column 
corresponds to the input and output variable dimensions. For example, in the case of (Xtr, Ytr), and 
assuming M simulation runs, the corresponding CSV version would be akin to Table 1.  

Note, however, that the first column displaying the simulation number is not required in practice. It 
serves merely for illustration purposes within this report. The same is valid for the values, which were 
arbitrarily set. By default, the metamodel will automatically identify each line of the CSV as a different 
simulation result. On the other hand, the headers should identify and distinguish the input and output 
variables. 

Similar CSV structures can be easily derived for the remaining data sets.  
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Table 1 – Data Set Structure. 

5.2 Exploration Limits 

Another important requirement is the specification of the input search/exploration regions. This can 
be achieved by defining specific lower and upper thresholds for each independent input variable, 
which in turn will depend upon the case studies' nature and details. The corresponding CSV should be 
similar to the following table. 

Table 2 - Exploration Limits Set Structure. 

 

Lower limit Upper limit 

Input 1 0 300 

Input 2 0 1 

… … … 

Input D1 25 125 

 

These limits do not necessarily correspond to the input variables' possible ranges but rather to subsets 
of these ranges. For example, if Input 1 represents the taxi time (for all flows, for the sake of simplicity), 
in theory, the possible values will definitely lie in [0, +infinity]. However, for a particular case study, 
the metamodeling exploration region might be restricted to [100, 300]. This means that values outside 
this interval are not a priori relevant to the study in question. Note, however, that these input 
threshold specifications do not serve as inputs for the metamodel itself. Instead, they help define the 
simulators' input space exploration regions from a modeling and active learning perspective.  

5.3 Simulation-Metamodel-Repository Links 

As seen in section D3.2, the metamodel requires a communication link to the simulation model. 
Another important link is the connection to a data repository or database (MySQL, for example), which 
in turn is used to store and manage both training and prediction (metamodel results) datasets. A 
dedicated API might not be entirely necessary for the database access, as the metamodel script can 
natively connect to it and execute SQL-like requests. 

 

  Input 1 Input 2 … Input D1 Output 1 Output 2 … Output D2 

Simul run 1 100 0 … 0.1 300 10.5 … 50.3 

Simul run 2 150 0.5 … 0.2 350 15.8 … 75.8 

… … … … … … … … … 

Simul run M 300 1 … 0.3 400 30.9 … 100.4 
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Figure 4 - Links connecting the metamodel, simulation model, and data repository. 

 

The simulation metamodel starts its learning process with an initial set of prior simulation results 
accessible from the data repository. Afterward, this initial training set gets iteratively expanded via 
simulation requests as the active learning algorithm evolves. Here notice that a simulation request 
does not encompass the transfer of data per se but merely queries to run the simulation model with 
specific input data points locations. 

When the stopping criteria are met, the simulation metamodel's final results are stored in the data 
repository. Figure 4 briefly describes the involved data flows. The dashed line connecting the 
simulation model and the data repository means that the depicted data flow occurs only once, i.e., it 
is not part of the cyclic active learning algorithm. 

Ideally, the metamodel should request and obtain simulation results via API. If this is not possible, 
direct manipulation of text-based files, which are then read by the simulator as inputs, constitutes a 
straightforward compromise. 

Additionally, for traceability and logging purposes, each active learning iteration can be stored in the 
data repository, along with the metamodel's fitting parameters and several prediction performance 
indicators. This tracing can be provided by the metamodel script after the algorithm has finished, along 
with the metamodel's results. 

5.4 Metamodel High-Level Requirements Summary 

As the project evolves, it is expected that some of these requirements might be either expanded or 
revisited in the future. Most of the potential adjustments are likely to depend on the simulation 
models' final concrete implementations and data repository, especially in terms of their API 
specifications. The following table summarizes these requirements. 

Table 3 - Metamodel High-Level Requirements Summary. 
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ID Description Comment 

NOSTROMO-MM-REQ-01 Metamodel receives a CSV (txt) 
file containing the input-output 
simulation results.  

Corresponds to the training 
data set - (Xtr, Ytr). 

NOSTROMO-MM-REQ-02 Metamodel receives a CSV (txt) 
file containing only input variables 
values.  

Corresponds to the prediction 
set - independent variables 
only - Xpred's 

NOSTROMO-MM-REQ-03 CSV (or simple .txt format) using 
“,” (comma) as a value separator. 

n.a. 

NOSTROMO-MM-REQ-04 Headers should be present to 
identify and distinguish the input 
from the output variables. 

The identification via header 
can be made, for example, by 
appending "_input" or 
"_output" to the end of the 
variables names.  

NOSTROMO-MM-REQ-05 The CSV file lines refer to different 
simulation runs, and columns 
refer to the input/output 
variables used. 

n.a. 

NOSTROMO-MM-REQ-06 Metamodel provides to the data 
repository a CSV (txt) file 
containing the input-output 
predicted results. Each line refers 
to a different simulation run, and 
columns refer to the input/output 
variables used. 

Corresponds to the entire 
prediction set - (Xpred, Ypred) 

NOSTROMO-MM-REQ-07 Metamodel provides to the data 
repository a CSV (txt) containing 
the prediction history split by 
iteration. The structure should be 
similar to that of NOSTROMO-
MM-REQ-06 

In practice, it corresponds to 
each iterative (Xpred_i, 
Ypre_i), where i is the 
iteration number. Hence, each 
CSV file should be generated 
by iteration. Moreover, the 
index i should be appended to 
the end of the file's name 
using, for example, "_iter_i". 

NOSTROMO-MM-REQ-08 Metamodel provides to the data 
repository a CSV (txt) containing 
the history of its own parameters, 
which should vary from iteration 
to iteration. 

The structure of this file is 
highly dependent on the type 
of metamodel used. In the 
case of the simplest approach 
of Gaussian Processes, only 
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two hyper-parameters are 
used. Hence, an n x 2 matrix 
would suffice, where n is the 
number of iterations. 

NOSTROMO-MM-REQ-09 Metamodel provides to the data 
repository a CSV (txt) containing 
the history of its prediction 
performance or other kinds of 
relevant metrics. 

This should be an n x K matrix, 
where n is the number of 
iterations and K the number of 
metrics. 

NOSTROMO-MM-REQ-10 Each input/output variable should 
be unidimensional and can be 
both continuous or discrete. 

For example, if an input 
variable is a bidimensional 
array containing the mean and 
standard deviation of a 
Gaussian distribution, it 
should be split into two 
different columns.  

NOSTROMO-MM-REQ-11 Metamodel receives the lower 
and upper search bounds for each 
input dimension via a CSV (txt).  

This data can be represented 
by a D1 x 2 matrix, where each 
line corresponds to each input 
variable. The two columns 
encompass the lower and 
upper bounds, respectively. 
This helps the metamodel to 
define the input 
search/exploration space of 
interest. 

NOSTROMO-MM-REQ-12 Metamodel requires a 
communication link to query (or 
run) the simulation model in 
specific input points to obtain the 
real simulation results (or labels). 
This can typically be achieved via 
Application Programming 
Interface (API) on the simulation 
model's side. 

Each query's result should be 
in the form of CSV (txt) as in 
NOSTROMO-MM-REQ-01. This 
link is crucial for the active 
learning part of the 
metamodeling methodology. 
Many APIs typically work with 
JSON files. If required, minor 
adaptations can be made so 
that the metamodel receives 
that type of file. 

NOSTROMO-MM-REQ-13 Metamodel requires a connection 
to a database from which it can 
read the initial simulation results. 

The initial simulation results 
encompass prior simulation 
experiments and constitute 
the starting point for the 
active learning process. 
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NOSTROMO-MM-REQ-14 Metamodel requires a connection 
to a database where it can store 
its results. 

The metamodel stores its final 
results in the database for 
further analysis. 

NOSTROMO-MM-REQ-15 Metamodeling methodology is 
implemented in Python. 

Other scripting languages can 
be used, such as R or Matlab, 
although it is improbable. 

NOSTROMO-MM-REQ-16 Operating System (OS): 
Unix/Linux. 

As Python is cross-platform, 
the OS can be changed if any 
infrastructure requirement 
demands it. A few minor 
adjustments are likely to be 
undertaken. 

NOSTROMO-MM-REQ-17 High-level causal dependency 
among the simulation 
variables/parameters. 

Examples: workflow diagrams, 
pseudo-algorithms, and 
dependency graphs. 
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